The breakup of a spherical magnetic beads chain suspended along the magnetic axis of a magnet

G. Vinsard, S. Dufour Université de Lorraine, France

The behavior of magnetic beads submitted to the magnetic field of a cylindrical magnet and pulled is investigated. A finite element model is used to compute the magnetic field and the magnetic flux density, which are used in a recent force formula to obtain results close to those of the experiment.

Numerical Model = NM

▶ D_n the region of the bead No $n: \mu(\vec{x}) = \mu_0 \mu_r$ for $\vec{x} \in \bigcup_n D_n$; μ_0 otherwise

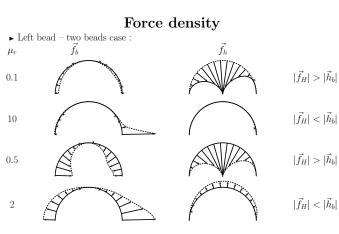
Force density on ∂D_n : Bossavit's formula $\vec{f}_{\partial D_n} = \frac{1}{2} \left(\mu_0 \left[\mu_r \right] \left(\vec{n} \times \left((\vec{h}^s + \vec{h}) \times \vec{n} \right) \right)^2 + \frac{1}{\mu_0} \left[\nu_r \right] \left((\mu_0 \vec{h}^s + \vec{b}) \cdot \vec{n} \right)^2 \right) \vec{n}$

▶ \vec{h}_s : source magnetic field; $\vec{h} = \vec{\nabla}\phi$, $\vec{b} = \vec{\nabla} \times \vec{a}$ magnetic field and magnetic flux density produced by the beads. With azimuthal symmetry : $\phi(r, z)$, $\vec{a} = a(r, z) \vec{k}_{\theta}$

where
$$\begin{cases} \forall \vec{b}' = \vec{\nabla} \cdot \left(a' \vec{k}_{\theta}\right) : \int_{0}^{\infty} r \, dr \int_{-\infty}^{\infty} dz \left(\frac{b \cdot b'}{\mu} - \frac{\mu - \mu_{0}}{\mu} \vec{h}^{s} \cdot \vec{b}'\right) = 0\\ \forall \vec{h}' = \vec{\nabla} \varphi' \qquad : \int_{0}^{\infty} r \, dr \int_{-\infty}^{\infty} dz \left(\mu \, \vec{h} \cdot \vec{h}' + (\mu - \mu_{0}) \vec{h}^{s} \cdot \vec{h}'\right) = 0 \end{cases}$$

► Force in bead No n : $\vec{f}_n = \int_{\partial D_n} \vec{f}_{\partial D_n} \, dS$

▶ Lagrange P1 finite element in a truncated region subset of the half-plane $\mathbf{R}^+ \times \mathbf{R}$



Harpavat's experiment evidences There is a length (in number of

beads) of the sustained chain bevond which an extra bead does not

When the chain has more than a

certain length a force applied to the below bead breaks the connexion

between the chain and this bead and we obtain a chain smaller of a unity

 $cling \rightarrow maximum \ length$

 \rightarrow rigidity length

Rigidity length : 5

Cylindrical magnet : radius 1cm ; height 1cm ; magnetization $0.95 \ 10^6 \ \text{A/m}.$

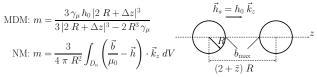
Beads : radius R=2mm ; weight 0.35 g.

Gap between to bead and magnet : 7.6mm.

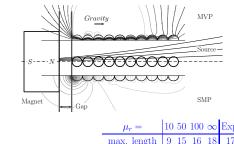
Maximum length : 17

Two beads - uniform source field

μ_r	\tilde{z}	$\frac{m^*}{h_0}$	$\frac{m^{\dagger}}{h_0}$	$\frac{f_z^*(\text{MDM})}{\mu_0 R^2 h_0}$	$\frac{f_z^{\dagger} = f_{zb}^{\dagger} + f_{zh}^{\dagger}}{\mu_0 R^2 h_0} \text{ (NM)}$	$\frac{b_{\max}}{\mu_0 h_0}$ (NM)
0.1	0.5	-1.22	-1.22	0.32	0.29 = 0.02 + 0.27	0.09
0.1	0.01	-1.16	-1.17	0.69	0.51 = 0.48 + 0.03	0.04
10	0.5	2.49	2.49	1.33	1.55 = 1.53 + 0.02	3.07
10	0.01	2.76	2.95	3.92	14.79 = 13.01 + 1.78	14.35
100	0.5	3.32	3.32	2.37	2.89 = 2.84 + 0.05	3.98
100	0.01	3.83	4.58	7.51	88.59 = 87.48 + 1.11	76.2
∞	0.5	3.44	3.44	2.53	3.10 = 3.10 + 0	2.28
∞	0	4	5.69	8.37	2615 = 2615 + 0	∞



Characteristic lengths of chains

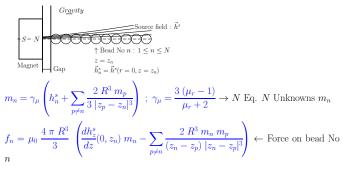


rigidity length 3 6 7 9 5

• The values of μ_r that fit best the experimental observations are : 100 for the maximum length and 50 for the rigidity length.

▶ The difference can be explained if we consider that the magnetic saturation is not taken into account in the model.

Mutual Dipole Model = MDM



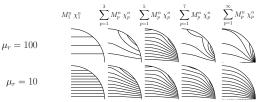
▶ The mean values of the total magnetic field (source + those due to the other beads) is used to determinate the dipolar magnetization in each beads

▶ The force in each bead is computed with any valid method.

Magnetization in the beads

► In the bead
$$n$$
: $\vec{m}_n = \frac{\vec{b}}{\mu_0} - \vec{h}$ that can be expanded as $\vec{m}_n = \sum_{p=1}^{\infty} M_p^n \vec{u}_p^n$ where
 $\vec{u}_p^n = \vec{\nabla} \left(\frac{\rho^p}{R^{p-1}} P_p(\cos\psi)\right)$ with $\begin{cases} r = \rho \sin\psi \\ z = z_n + \rho \cos\psi \end{cases}$, P_p : Legendre polynomial ; and
 $M_p^n = \int_{D_n} \vec{m}_n \cdot \vec{u}_p^n \, dV / \int_{D_n} (\vec{u}_p^n)^2 \, dV$
► $\vec{u}_p^n = \vec{\nabla} \times \left(\chi_p^n \vec{k}_\theta\right)$: iso- χ_p^n are the lines of magnetization

• With an ∞ number of beads, the magnetization is the same in the beads



Saturation model is needed

• From comparison to experiment ;

▶ From the inspection of the value of maximum magnetic flux density in the NM;

• From the asymptotic analysis of a near the contact point of two beads (z = r = 0)

$$a \approx A = (r^2 + z^2)/r - r \log(r/R)$$

▶ What is the force density in the non-linear case ?