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Context

� Electromagnetic fluid flow control :
electrical current + magnetic induction =⇒ Lorentz force density
=⇒ flow

� Small scale device : milli-, micro- (and even nano-) meters,
microfluidics.

� Chaotic advection : ideally ~v(t, ~x) such as

∀ǫ > 0 :
d ~X

dt
= ~v(t, ~X ) =⇒ ∀ ~x , ∃ t : |~X (t)− ~x | < ǫ

� Chaotic advection enhances mixing in Stokes flows (small scale).

� Lorentz forces are effective in propelling liquids in microfluidics.



Work’s rationale

� An object floating on a liquid electrolyte can be used as a stirrer
(mixer). If the liquid is propelled by Lorentz forces and if the stirrer
can conduct electricity, a very complex flow can thus be created ;

� The floating object has its own motion with respect to the flow ;

� This work is a first step to evaluate the mixing ability of a
floating object when both fluid and object are submitted to
Lorentz forces ;

� The results obtained with a numerical coupled
electromagnetic/fluid flow model of the motion of a conducting
floating object on top of an electrolyte are compared with
experiments.



Experimental setup

Tank and F.O. (floating object) zoom on the F.O.
� 5 mm ; thickness 0.35 mm

� Tank : � 5 cm ; Electrolyte (CuSO4) : depth 2 mm

� Central (� 5 mm) and peripheral electrodes : voltage ≈ 0.5 V



Steady-state Motion

� When the applied voltage is constant, the steady state trajectory
of the F.O. is circular. R is the equilibrium radius.
The free surface of the electrolyte is slightly concave (meniscus)
due to surface tension. An equilibrium between the attractive
central force and the repulsive centrifugal forces is obtained.

� The position of the center of the F.O. is

R ~kR with

{

~kR = cosΘ ~kx + sinΘ ~ky
~kΘ = − sinΘ ~kx + cosΘ ~ky

� Furthermore the F.O. has an intrinsic rotation (velocity ω) ;

� The aim here is to determine Θ̇ and ω vs geometry, physical
properties, applied voltage and magnetic field intensity.



Electric model

=⇒
� Two regions : the electrolyte (σ ≈ 1.5S/m), the thin (0.35 mm)
floating object (σc ≈ 50MS/m)

� Asymptotic model : the F.O. is approximated as 2d part of the
(assumed flat) free surface

� the electric potential ϕ minimizes the Joule dissipated power

∫

D

σ
(

~∇ϕ
)2

d~x +

∫

Γ

e σc

(

~∇2dϕ
)2

d~x2d

with given voltages on the electrodes.



Path of electrical current (in a cross section)

σc 6= 0

σc = 0

� The conducting F.O. deflects a non-negligible amount of the
current : ≈ 10% of the total current here (R = 6 mm).



Lorentz force density in the electrolyte

� ~bs computed with the Biot and Savart formula, ~fl =~j × ~bs

fl conducting F.O. ∆fl between cond. and non-cond. F.O.

� the conducting F.O. generates a dipolar perturbation in the
electrolyte’s force density.

� Moreover, the force and torque in the F.O. are

FlΘ =

∫

Γ

−(σc e ~∇2dϕ× ~bs) · ~kΘ d~x2d

Γl =

∫

Γ

−
[

(~x − R ~kR)× (σc e ~∇2dϕ× ~bs)
]

· ~kz d~x2d



Velocity field

� Stokes approximation (inertial terms neglected) is used ;
~v the velocity and p the pressure fields

~fl = −η~∇2~v + ~∇p ; ~∇ · ~v = 0
balance of local forces incompressibility

� Boundary conditions

Γ
−

b

Γ

Γt

Γl

Γ
0

b

~v = u ~kx + v ~ky + w ~kz
� u = v = w = 0 on Γb ∪ Γl
� w = 0 ; ∂zu = ∂zv = 0 on Γt
� w = 0 ;
u ~kx + v ~ky = R Θ̇~kΘ + ω ~kz × (~x − R ~kR)
on Γ

� Velocity split
~v = ~v0 + R Θ̇ ~v1 + ω ~v2 (p = p0 + R Θ̇ p1 + ω p2),
which leads to 3 independent Stokes problems.



Stokes functionals
� Common constraints : u = v = w = 0 on Γb ∪ Γl ,

w = 0 ; ∂zu = ∂zv = 0 on Γt

� Velocity ~v0 and pressure p0 when the F.O. is at rest

D0 =

∫

D

[

η

2

(

~∇× ~v
)2

+ ~∇p · ~v − ~fl · ~v

]

d~x

with common constraints and ~v = ~0 on Γ

� ~v1 and p1 without Lorentz force density ~fl nor intrinsic rotation ω

D1 =

∫

D

[

η

2

(

~∇× ~v
)2

+ ~∇p · ~v

]

d~x

with common constraints and ~v = ~kΘ on Γ

� ~v2 and p2 without ~fl nor azimuthal rotation Θ̇

D2 =

∫

D

[

η

2

(

~∇× ~v
)2

+ ~∇p · ~v

]

d~x

with common constraints and ~v = ~kz × (~x − R ~kR) on Γ



Extremization of the functionals

� For a functional, say D0(~v , p) =

∫

D

[

η

2

(

~∇× ~v
)2

+ ~∇p · ~v − ~fl · ~v

]

d~x

(taking into account the Dirichlet condition) : formally the
extremization consists in a simultaneous :

◮ minimization with respect to ~v – D0 express the dissipated
power by viscous effets minus the rate of work of the force
density ~fl by unity of time, i.e. the source power ;

◮ maximization with respect to p – the term
∫

D
~∇p · ~v d~x = −

∫

D
p ~∇ · ~v d~x ensures the incompressibility

constraint and p is the Lagrange multiplier associated to this
constraint.

� The Uzawa algorithm is used : ~v(p) minimizes D0(~v , p) with
respect to ~v when p is given and the functional D0(~v(p), p) is
mazimized with respect to p (at the discrete level, by using the
conjugate gradient method).



Streamlines and iso-velocity lines

Conducting F.O. diff. between a cond and non-cond F.O
Cond. F.O.

Non-cond. F.O.



Balance of force and torque in the F.O.

� Lorentz : FlΘ =

∫

Γ

−(σc e ~∇2dϕ× ~bs) · ~kΘ d~x2d

Γl =

∫

Γ

−
[

(~x − R ~kR)× (σc e ~∇2dϕ× ~bs)
]

· ~kz d~x2d

� Friction Ff =

∫

Γ

~ff · ~kΘ d~x2d ,

Γf =

∫

Γ

(

(~x − R ~kR)× ~ff

)

· ~kz d~x2d with

~ff = η
(

∂zu ~kx + ∂zv ~ky

)

on Γ (shear stress analysis).

� Steady-state : FlΘ + Ff = 0 and Γl + Γf = 0
with the splitting ~v = ~v0 + R Θ̇ ~v1 + ω ~v2 :
two equations and two unknowns Θ̇, ω



Velocity and intrinsic velocity of the F.O.
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Simplified dynamical system

� With the quasi-static assumption for both the electric potential
and the velocity field, the motion of the F.O. is given by

mR
dΘ̇

dt
= FlΘ + Ff ; J

dω

dt
= Γl + Γf

where
[

Ff
Γf

]

= −

[

λ0

ξ0

]

−

[

λ1Θ λ1ω

ξ1Θ ξ1ω

] [

RΘ̇
ω

]

� The order of the relaxation time ≈ 1s is qualitatively verified by
experiment.



Conclusions

� A coupled electromagnetic/fluid flow model has been
constructed and solved to calculate the steady state of the motion
of a floating object. Results agree quite well with experiments.

� Future work is underway to predict the motion when the applied
voltage is time-dependent and for different geometries.

� The final objective is to design a device where an additive will
be mixed with the fluid by chaotic advection.



Friction coefficients vs R

0

4

8

12

0 5 10 15 20 25

λ1Θ × 1m/s

λ
0 × 100fo

rc
es

µ
N

R (mm)

−1

3

7

11

0 5 10 15 20 25

ξ0 × 0.1
ξ1Θ × 1m/s

ξ1ω × 1rd/s

T
or
q
u
es

n
N
m

R (mm)



Parallel Computation

Source field ~bs

Proc 1 Proc 2 . . . Proc N

FE Matrix of ϕ

parallel solver : MUMPS

Source field ~fl

FE Matrices of (u, v ,w)

parallel solver : MUMPS

Pressure update

; ϕ

; (u, v ,w , p)


