Motion of a conducting floating object on top of an electrolyte submitted to Lorentz forces

G. Vinsard, S. Dufour, E. Saatdjian

emla Université de Lorraine, France

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Context

► Electromagnetic fluid flow control : electrical current + magnetic induction ⇒ Lorentz force density ⇒ flow

► Small scale device : milli-, micro- (and even nano-) meters, microfluidics.

• Chaotic advection : ideally
$$\vec{v}(t, \vec{x})$$
 such as
 $\forall \epsilon > 0 : \frac{d\vec{X}}{dt} = \vec{v}(t, \vec{X}) \Longrightarrow \forall \vec{x}, \exists t : |\vec{X}(t) - \vec{x}| < \epsilon$

Chaotic advection enhances mixing in Stokes flows (small scale).

► Lorentz forces are effective in propelling liquids in microfluidics.

Work's rationale

► An object floating on a liquid electrolyte can be used as a stirrer (mixer). If the liquid is propelled by Lorentz forces and if the stirrer can conduct electricity, a very complex flow can thus be created ;

▶ The floating object has its own motion with respect to the flow ;

► This work is a first step to evaluate the mixing ability of a floating object when both fluid and object are submitted to Lorentz forces ;

► The results obtained with a numerical coupled electromagnetic/fluid flow model of the motion of a conducting floating object on top of an electrolyte are compared with experiments.

Experimental setup

Tank and F.O. (floating object)

zoom on the F.O. \varnothing 5 mm ; thickness 0.35 mm

▶ Tank : \emptyset 5 cm ; Electrolyte (*CuSO*₄) : depth 2 mm

• Central (\emptyset 5 mm) and peripheral electrodes : voltage \approx 0.5 V

Steady-state Motion

▶ When the applied voltage is constant, the steady state trajectory of the F.O. is circular. *R* is the equilibrium radius. *The free surface of the electrolyte is slightly concave (meniscus) due to surface tension. An equilibrium between the attractive central force and the repulsive centrifugal forces is obtained.*

► The position of the center of the F.O. is

$$R \ \vec{k}_R \ \text{with} \ \left\{ \begin{array}{l} \vec{k}_R = \cos \Theta \ \vec{k}_x + \sin \Theta \ \vec{k}_y \\ \vec{k}_\Theta = -\sin \Theta \ \vec{k}_x + \cos \Theta \ \vec{k}_y \end{array} \right.$$

Furthermore the F.O. has an intrinsic rotation (velocity ω);

► The aim here is to determine Θ and ω vs geometry, physical properties, applied voltage and magnetic field intensity.

Electric model

► Two regions : the electrolyte ($\sigma \approx 1.5S/m$), the thin (0.35 mm) floating object ($\sigma_c \approx 50MS/m$)

► Asymptotic model : the F.O. is approximated as 2d part of the (assumed flat) free surface

 \blacktriangleright the electric potential φ minimizes the Joule dissipated power

$$\int_{D} \sigma \left(\vec{\nabla} \varphi \right)^{2} d\vec{x} + \int_{\Gamma} e \sigma_{c} \left(\vec{\nabla}_{2d} \varphi \right)^{2} d\vec{x}_{2d}$$

with given voltages on the electrodes.

Path of electrical current (in a cross section)

► The conducting F.O. deflects a non-negligible amount of the current : $\approx 10\%$ of the total current here (R = 6 mm).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lorentz force density in the electrolyte

▶ \vec{b}_s computed with the Biot and Savart formula, $\vec{f}_l = \vec{j} \times \vec{b}_s$

► the conducting F.O. generates a dipolar perturbation in the electrolyte's force density.

► Moreover, the force and torque in the F.O. are

$$F_{I\Theta} = \int_{\Gamma} -(\sigma_c \ e \ \vec{\nabla}_{2d} \varphi \times \vec{b}_s) \cdot \vec{k}_{\Theta} \ d\vec{x}_{2d}$$

$$\Gamma_I = \int_{\Gamma} -\left[(\vec{x} - R \ \vec{k}_R) \times (\sigma_c \ e \ \vec{\nabla}_{2d} \varphi \times \vec{b}_s) \right] \cdot \vec{k}_z \ d\vec{x}_{2d}$$

Velocity field

► Stokes approximation (inertial terms neglected) is used ; \vec{v} the velocity and p the pressure fields $\vec{f}_l = -\eta \vec{\nabla}^2 \vec{v} + \vec{\nabla} p$; $\vec{\nabla} \cdot \vec{v} = 0$ balance of local forces incompressibility

Boundary conditions

$$\vec{v} = u \ \vec{k}_x + v \ \vec{k}_y + w \ \vec{k}_z$$

$$\blacktriangleright u = v = w = 0 \quad \text{on } \Gamma_b \cup \Gamma_l$$

$$\blacktriangleright w = 0 \quad ; \quad \partial_z u = \partial_z v = 0 \quad \text{on } \Gamma_t$$

$$\vdash w = 0 ; \quad u \ \vec{k}_x + v \ \vec{k}_y = R \ \Theta \ \vec{k}_\Theta + \omega \ \vec{k}_z \times (\vec{x} - R \ \vec{k}_R) \text{ on } \Gamma$$

► Velocity split $\vec{v} = \vec{v}_0 + R \dot{\Theta} \vec{v}_1 + \omega \vec{v}_2 \ (p = p_0 + R \dot{\Theta} p_1 + \omega p_2),$ which leads to 3 independent Stokes problems.

Stokes functionals

► Common constraints :
$$u = v = w = 0$$
 on $\Gamma_b \cup \Gamma_l$,
 $w = 0$; $\partial_z u = \partial_z v = 0$ on Γ_t

▶ Velocity \vec{v}_0 and pressure p_0 when the F.O. is at rest

$$D_0 = \int_D \left[\frac{\eta}{2} \left(\vec{\nabla} \times \vec{v} \right)^2 + \vec{\nabla} p \cdot \vec{v} - \vec{f}_l \cdot \vec{v} \right] d\vec{x}$$

with common constraints and $\vec{v} = \vec{0}$ on Γ

► \vec{v}_1 and p_1 without Lorentz force density \vec{f}_l nor intrinsic rotation ω $D_1 = \int_D \left[\frac{\eta}{2} \left(\vec{\nabla} \times \vec{v} \right)^2 + \vec{\nabla} p \cdot \vec{v} \right] d\vec{x}$ with common constraints and $\vec{v} = \vec{k}_{\Theta}$ on Γ

 \blacktriangleright \vec{v}_2 and p_2 without \vec{f}_l nor azimuthal rotation $\dot{\Theta}$

$$D_{2} = \int_{D} \left[\frac{\eta}{2} \left(\vec{\nabla} \times \vec{v} \right)^{2} + \vec{\nabla} p \cdot \vec{v} \right] d\vec{x}$$

with common constraints and $\vec{v} = \vec{k}_{z} \times (\vec{x} - R \ \vec{k}_{R})$ on Γ

Extremization of the functionals

► For a functional, say $D_0(\vec{v}, p) = \int_D \left[\frac{\eta}{2} \left(\vec{\nabla} \times \vec{v}\right)^2 + \vec{\nabla} p \cdot \vec{v} - \vec{f}_l \cdot \vec{v}\right] d\vec{x}$ (taking into account the Dirichlet condition) : formally the extremization consists in a simultaneous :

- minimization with respect to $\vec{v} D_0$ express the dissipated power by viscous effets minus the rate of work of the force density $\vec{f_l}$ by unity of time, i.e. the source power ;
- ▶ maximization with respect to p the term $\int_D \vec{\nabla} p \cdot \vec{v} \, d\vec{x} = -\int_D p \, \vec{\nabla} \cdot \vec{v} \, d\vec{x}$ ensures the incompressibility constraint and p is the Lagrange multiplier associated to this constraint.
- ► The Uzawa algorithm is used : $\vec{v}(p)$ minimizes $D_0(\vec{v}, p)$ with respect to \vec{v} when p is given and the functional $D_0(\vec{v}(p), p)$ is mazimized with respect to p (at the discrete level, by using the conjugate gradient method).

Balance of force and torque in the F.O.

► Lorentz :
$$F_{I\Theta} = \int_{\Gamma} -(\sigma_c \ e \ \vec{\nabla}_{2d} \varphi \times \vec{b}_s) \cdot \vec{k}_{\Theta} \ d\vec{x}_{2d}$$

 $\Gamma_I = \int_{\Gamma} -\left[(\vec{x} - R \ \vec{k}_R) \times (\sigma_c \ e \ \vec{\nabla}_{2d} \varphi \times \vec{b}_s) \right] \cdot \vec{k}_z \ d\vec{x}_{2d}$
► Friction $F_f = \int_{\Gamma} \vec{f}_f \cdot \vec{k}_{\Theta} \ d\vec{x}_{2d},$
 $\Gamma_f = \int_{\Gamma} \left((\vec{x} - R \ \vec{k}_R) \times \vec{f}_f \right) \cdot \vec{k}_z \ d\vec{x}_{2d}$ with
 $\vec{f}_f = \eta \left(\partial_z u \ \vec{k}_x + \partial_z v \ \vec{k}_y \right)$ on Γ (shear stress analysis)

► Steady-state : $F_{I\Theta} + F_f = 0$ and $\Gamma_I + \Gamma_f = 0$ with the splitting $\vec{v} = \vec{v}_0 + R \dot{\Theta} \vec{v}_1 + \omega \vec{v}_2$: two equations and two unknowns $\dot{\Theta}$, ω

Velocity and intrinsic velocity of the F.O.

Simplified dynamical system

► With the quasi-static assumption for both the electric potential and the velocity field, the motion of the F.O. is given by

$$mR\frac{d\Theta}{dt} = F_{I\Theta} + F_f \quad ; \quad J\frac{d\omega}{dt} = \Gamma_I + \Gamma_f$$

where

$$\begin{bmatrix} F_f \\ \Gamma_f \end{bmatrix} = -\begin{bmatrix} \lambda_0 \\ \xi_0 \end{bmatrix} - \begin{bmatrix} \lambda_{1\Theta} & \lambda_{1\omega} \\ \xi_{1\Theta} & \xi_{1\omega} \end{bmatrix} \begin{bmatrix} R\dot{\Theta} \\ \omega \end{bmatrix}$$

▶ The order of the relaxation time $\approx 1s$ is qualitatively verified by experiment.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

Conclusions

► A coupled electromagnetic/fluid flow model has been constructed and solved to calculate the steady state of the motion of a floating object. Results agree quite well with experiments.

► Future work is underway to predict the motion when the applied voltage is time-dependent and for different geometries.

► The final objective is to design a device where an additive will be mixed with the fluid by chaotic advection.

Friction coefficients vs R

Parallel Computation

